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Abstract

We give the concept, construction and some basic properties of coefficient
matrices of a multipartite qudit pure state. Then based on them, we obtain
necessary and sufficient full and partial separability criteria for multipartite
qudit pure states. These criteria are very practical, operational and convenient.

PACS numbers: 03.67.−a, 03.65.Fd

1. Introduction

A multipartite qudit (i.e. a unit of quantum information in a d-level quantum system where d is
arbitrary) system consists of two or more subsystems that may have different dimensions from
one another. Therefore, it is the most general object that we investigate in quantum computation
and quantum information [1]. Every main result in this paper is about a multipartite qudit
system. A pure state |ψ〉 of a bipartite quantum system consisting of subsystems A with
dimension dA and B with dimension dB can be written as |ψ〉 = ∑

ij cij |iA〉|jB〉 where {|iA〉}
and {|jB〉} are the arbitrary orthonormal bases of A and B respectively. Then we can construct
a dA × dB matrix CA by arranging all the coefficients cij ’s as (CA)ij = cij . On the other hand,
we can also construct a dB ×dA matrix CB by arranging all the coefficients cij ’s as (CB)ji = cij

which is just the transpose of CA. We call either of CA and CB a coefficient matrix. Thus we
can construct two coefficient matrices according to the coefficients of a bipartite pure state.
For an n-partite quantum system in the case n � 3, the situation becomes different as we will
argue in section 2. For example, for a tripartite pure state, we can construct six coefficient
matrices. Generally speaking, for an n-partite pure state, we can construct 2n − 2 coefficient
matrices.
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Some authors in their findings on multipartite quantum systems have used the technique
of coefficient matrices [2–7]. Most of them concern topics about multipartite entanglement
or separability. Entanglement lies at the very heart of quantum information theory [8], but
subjects of fully characterizing it whether qualitatively or quantitatively remain open [9]. Thus
entanglement has become the central issue in the debate on multipartite quantum systems.
Therefore, as mathematical tools for investigating multipartite quantum systems, coefficient
matrices are mainly applied to discuss entanglement problems. For example, by considering
three coefficient matrices of a four-qubit pure state, the authors of [3] showed that there is no
four-qubit pure state whose two-qubit reduced density matrices are all maximally mixed and
further proposed the four-qubit Higuchi–Sudbery state:

|M4〉 = 1√
6
[|0011〉 + |1100〉 + ω(|1010〉 + |0101〉) + ω2(|1001〉 + |0110〉)] (1.1)

where ω = e2π i/3, which is conjectured to have the maximal average entanglement as a system
of two pairs of qubits [10, 11]. In [5, 6], Lamata et al offered an inductive criterion to classify
multipartite entanglement under stochastic local operations and classical communication
(SLOCC) [12, 13] based on the analysis of the right singular subspaces of the coefficient
matrices of the state. Li et al [7] gave some necessary and sufficient conditions of separability
for pure states of n-partite quantum systems with the same subsystem dimension in terms of
n coefficient matrices of one state. However, it seems that there is little relatively detailed
introduction to coefficient matrices in the literature. Because the coefficient matrix method
is very operational, practical and convenient, we expect that it will have further and more
extensive applications on investigating multipartite quantum systems. Thus, it is necessary to
deal with it.

The rest of this paper is organized as follows. In section 2, we introduce the concept and
construction of coefficient matrices of a multipartite qudit pure state in detail by deducing the
equation ρ = CC∗ step by step that associates a reduced density matrix with its corresponding
coefficient matrix, and subsequently we give some basic properties of coefficient matrices. In
section 3, we give some practical necessary and sufficient full and partial separability criteria
for multipartite qudit pure states based on the coefficient matrix method. We close with some
concluding remarks in section 4.

2. The construction and basic properties of coefficient matrices for a multipartite qudit

pure state

We begin with some notations. Throughout this paper the symbol ‘∗’ stands for the Hermitian
adjoint operation and ‘T ’ stands for transposition. Suppose a multipartite qudit system with
state space H whose dimension is d consists of n subsystems with respective state space Ht

whose dimension is dt where t = 1, 2, . . . , n. Then we have H = H1 ⊗ H2 ⊗ · · · ⊗ Hn and
d = d1d2 · · · dn. Let |ψ〉 be a pure state on H and let {|it 〉} ≡ {|0〉t , |1〉t , . . . , |dt − 1〉t } be an
arbitrary orthonormal basis of Ht. Thus |ψ〉 can be expressed as

|ψ〉 =
d1−1∑
i1=0

d2−1∑
i2=0

· · ·
dn−1∑
in=0

ci1i2···in |i1〉|i2〉 · · · |in〉 =
∑

i1 i2 ···in

ci1i2···in |i1i2 · · · in〉 (2.1)

where ci1i2···in’s are the coefficients of |ψ〉 satisfying the normalization condition∑
i1 i2 ···in

∣∣ci1i2···in
∣∣2 = 1. Let ρ = |ψ〉 〈ψ | represent the density operator of the pure state

|ψ〉 on H. Additionally, we note the string i1i2 · · · in. When the dimensions dt of Ht

may differ from one another for all t = 1, 2, . . . , n, it takes dt values: 0, 1, . . . , dt − 1.
In this situation, similar to an n-bit binary integer in the special case dt = 2 for all
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t = 1, 2, . . . , n, the string i1i2 · · · in is also a numerical representation called a mixed radix
number [14]. Mixed radix numeral systems are the generalization of ordinary fixed radix
numeral systems. More precisely, the mixed radix number i1i2 · · · in represents the decimal
integer i1 × d2d3 · · · dn + i2 × d3d4 · · · dn + · · · + in−1 × dn + in. In the sequential discussion,
we will use this kind of mixed radix strings to denote the row and column indices of some
matrices.

Now we will calculate the reduced density operator ρs̄ = trs(ρ) by tracing out the sth
subsystem Hs where s ∈ {1, 2, . . . , n}. The bar symbol ‘−’ over the letter ‘s’ in the subscript
of ρs̄ can be understood as ‘complement’. Hence ‘s̄’ means the rest system of the entire system
H after the sth subsystem Hs is removed from it. By (2.1), we get

ρs̄ = trs(ρ) = trs(|ψ〉〈ψ |)

= trs

⎛
⎝ ∑

i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

|i1〉〈j1| ⊗ |i2〉〈j2| ⊗ · · · ⊗ |is〉 〈js | ⊗ · · · ⊗ |in〉〈jn|
⎞
⎠

=
∑

i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

〈js | is〉 |i1i2 · · · is−1is+1 · · · in〉 〈j1j2 · · · js−1js+1 · · · jn|

=
∑

i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

〈is | js〉 |i1i2 · · · is−1is+1 · · · in〉 〈j1j2 · · · js−1js+1 · · · jn|

=
∑

i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

|i1i2 · · · is−1is+1 · · · in〉 〈is | js〉 〈j1j2 · · · js−1js+1 · · · jn|

=
∑

i1 i2 ···in

ci1i2···in |i1i2 · · · is−1is+1 · · · in〉〈is |
∑

j1j2···jn

c∗
j1j2···jn

|js〉 〈j1j2 · · · js−1js+1 · · · jn|

= Cs̄C
∗
s̄ (2.2)

where we set

Cs̄ =
∑

i1 i2 ···in

ci1i2···in |i1i2 · · · is−1is+1 · · · in〉〈is |. (2.3)

Therefore, we can obtain the matrix expression ρs̄ = Cs̄C
∗
s̄ with respect to the basis

{|i1i2 · · · in〉} where the matrix Cs̄ of size d1d2 · · · ds−1ds+1 · · · dn × ds , whose entry in the
i1i2 · · · is−1is+1 · · · inth row and the is th column is ci1i2···is−1is is+1···in , is constructed as follows:

Cs̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c00···000···00 c00···010···00 · · · c00···0is 0···00 · · · c00···0(ds−1)0···00

c00···000···01 c00···010···01 · · · c00···0is 0···01 · · · c00···0(ds−1)0···01

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ci1i2···is−10is+1···in−1in ci1i2···is−11is+1···in−1in · · · ci1i2···is−1is is+1···in−1in · · · ci1i2···is−1(ds−1)is+1···in−1in

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ca1a2 ···as−10as+1···an−1an
ca1a2···as−11as+1···an−1an

· · · ca1a2···as−1is as+1···an−1an
· · · ca1a2 ···as−1(ds−1)as+1···an−1an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

where the digit at = dt − 1 for t = 1, 2, . . . , n and t 	= s in the subscripts of the elements in
the last row of Cs̄ . Thus all the entries of Cs̄ are exactly all the coefficients of |ψ〉.

The conclusion is as follows.

Proposition 2.1. Suppose |ψ〉 is a pure state on an n-partite qudit system H = H1 ⊗ H2 ⊗
· · · ⊗ Hn. Then the reduced density matrix ρs̄ by tracing out the sth subsystem Hs can be
expressed as

ρs̄ = Cs̄C
∗
s̄ (2.5)

3



J. Phys. A: Math. Theor. 42 (2009) 425306 Y Huang et al

where Cs̄ is a d1d2 · · · ds−1ds+1 · · · dn × ds matrix, all of whose entries are exactly all
the coefficients ci1i2···in’s of |ψ〉 with respect to some arbitrary orthonormal product basis
{|i1i2 · · · in〉}, as shown by (2.4). We call Cs̄ the coefficient matrix of the reduced density
matrix ρs̄ or the coefficient matrix of system s̄.

Currently, we continue to calculate the reduced density matrix by tracing out two
subsystems, say Hs and Hr, i.e. ρsr = trsr (ρ). Here, without loss of generality, we set
s < r ∈ {1, 2, . . . , n}, and ‘sr’ means the rest system of the entire system H after the sth
subsystem Hs and the rth subsystem Hr are removed from it. We get

ρsr = trsr (ρ) = trsr (|ψ〉〈ψ |)
=

∑
i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

〈js | is〉 〈jr | ir〉 |i1 · · · is−1is+1 · · · ir−1ir+1 · · · in〉

× 〈j1 · · · js−1js+1 · · · jr−1jr+1 · · · jn|
=

∑
i1 i2 ···inj1j2 ···jn

ci1i2···inc
∗
j1j2···jn

|i1 · · · is−1is+1 · · · ir−1ir+1 · · · in〉 〈is ir | jsjr〉

× 〈j1 · · · js−1js+1 · · · jr−1jr+1 · · · jn|
=

∑
i1 i2 ···in

ci1i2···in |i1 · · · is−1is+1 · · · ir−1ir+1 · · · in〉 〈is ir |

×
∑

j1j2···jn

c∗
j1j2···jn

|jsjr〉 〈j1 · · · js−1js+1 · · · jr−1jr+1 · · · jn|

= CsrC
∗
sr (2.6)

where we set

Csr =
∑

i1 i2 ···in

ci1i2···in |i1 · · · is−1is+1 · · · ir−1ir+1 · · · in〉 〈is ir |. (2.7)

Therefore, we can obtain the matrix expression ρsr = CsrC
∗
sr with respect to the basis

{|i1i2 · · · in〉} where the matrix Csr of size d1d2 · · · ds−1ds+1 · · · dr−1dr+1 · · · dn × dsdr , whose
entry in the i1i2 · · · is−1is+1 · · · ir−1ir+1 · · · inth row and is ir th column is ci1i2···is−1is is+1···ir−1ir ir+1···in ,
is constructed as follows:

Csr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c00···0···0···00 c00···0···1···00 · · · c00···is ···ir ···00 · · · c00···(ds−1)···(dr−1)···00

c00···0···0···01 c00···0···1···01 · · · c00···is ···ir ···01 · · · c00···(ds−1)···(dr−1)···01

...
...

...
...

...
...

ci1i2···0···0···in−1in ci1i2···0···1···in−1in · · · ci1i2···is ···ir ···in−1in · · · ci1i2···(ds−1)···(dr−1)···in−1in

...
...

...
...

...
...

ca1a2···0···0···an−1an
ca1a2···0···1···an−1an

· · · ca1a2···is ···ir ···an−1an
· · · ca1a2···(ds−1)···(dr−1)···an−1an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.8)

where the digit at = dt −1 for t = 1, 2, . . . , n and t 	= s, r in the subscripts of the elements in
the last row of Csr . Thus, like Cs̄ , all the entries of Csr are exactly all the coefficients of |ψ〉.

The conclusion is as follows.

Proposition 2.2. Suppose |ψ〉 is a pure state on an n-partite qudit system H = H1 ⊗ H2 ⊗
· · · ⊗ Hn. Then the reduced density matrix ρsr by tracing out the sth and the rth subsystem Hs

and Hr can be expressed as

ρsr = CsrC
∗
sr (2.9)

4
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where Csr is a d1d2 · · · ds−1ds+1 · · · dr−1dr+1 · · · dn × dsdr matrix, all of whose entries are
exactly all the coefficients ci1i2···in’s of |ψ〉 with respect to some arbitrary orthonormal product
basis {|i1i2 · · · in〉}, as shown by (2.8). We call Csr the coefficient matrix of the reduced density
matrix ρsr or the coefficient matrix of system sr .

Along the same line above and by induction, we can calculate the reduced density operator
after tracing out any number of subsystems and draw the similar conclusion. In other words,
we have the similar and generalized result for an arbitrary reduced density matrix of an n-
partite qudit pure state. Suppose ρP is the reduced density matrix of an arbitrary nontrivial
partition (i.e. subset) P ⊆ {H1,H2, . . . , Hn} by tracing out its nontrivial complement
partition P̄ = {H1,H2, . . . , Hn} − P . If we set IP = {t : Ht ∈ P } = {t1, t2, . . . , tm} where
t1 < t2 < · · · < tm and IP̄ = {t : Ht ∈ P̄ } = {t ′1, t ′2, . . . , t ′l } where t ′1 < t ′2 < · · · < t ′l as
the nonempty index sets of partition P and partition P̄ , respectively, dP = ∏

t∈IP
dt is the

dimension of partition P and dP̄ = ∏
t∈IP̄

dt is the dimension of partition P̄ . In addition, we
set the mixed radix number it1 it2 · · · itm = iP and the mixed radix number it ′1 it

′
2
· · · it ′l = iP̄ .

Similar to (2.2) and (2.6), it holds that ρP = CP C∗
P where we set

CP =
∑

i1 i2 ···in

ci1i2···in |it1 it2 · · · itm〉 〈
it ′1 it

′
2
· · · it ′l

∣∣ =
∑

i1 i2 ···in

ci1i2···in |iP 〉 〈iP̄ |. (2.10)

Therefore, we can obtain the matrix expression ρP = CP C∗
P with respect to the basis

{|i1i2 · · · in〉} where the matrix CP of size dP × dP̄ , whose entry ciP ,iP̄ in the iP th row and the
iP̄ th column where 0 � iP � dP − 1, 0 � iP � dP̄ − 1 is the coefficient ci1i2···in of |ψ〉 such
that it1 it2 · · · itm = iP and it ′1 it

′
2
· · · it ′l = iP̄ , is constructed as follows:

CP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 c0,1 · · · c0,iP̄ · · · c0,(dP̄ −1)

c1,0 c1,1 · · · c1,iP̄ · · · c1,(dP̄ −1)

...
...

...
...

...
...

ciP ,0 ciP ,1 · · · ciP ,iP̄ · · · ciP ,(dP̄ −1)

...
...

...
...

...
...

c(dP −1),0 c(dP −1),1 · · · c(dP −1),iP̄ · · · c(dP −1),(dP̄ −1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

Thus, like Cs̄ and Csr , all the entries of CP are exactly all the coefficients of |ψ〉.
The conclusion is as follows.

Theorem 2.1. Suppose |ψ〉 is a pure state on an n-partite qudit system H = H1 ⊗H2 ⊗· · ·⊗
Hn. Then the reduced density matrix ρP of an arbitrary nontrivial partition P by tracing out
its nontrivial complement partition P̄ can be expressed as

ρP = CP C∗
P (2.12)

where CP is a dP × dP̄ matrix, all of whose entries are exactly all the coefficients ci1i2···in’s
of |ψ〉 with respect to some arbitrary orthonormal product basis {|i1i2 · · · in〉}, as shown by
(2.11). We call CP the coefficient matrix of the reduced density matrix ρP or the coefficient
matrix of partition P.

For example, suppose {H1,H2,H3,H4,H5} is a five-qubit system having pure state |ψ〉.
Then by theorem 2.1, the coefficient matrix C{H1,H3} of the reduced density matrix ρ{H1,H3} of
partition {H1,H3} is a 4 × 8 matrix satisfying ρ{H1,H3} = C{H1,H3}C

∗
{H1,H3} and the entry c10,101

of C{H1,H3} with binary row index 10 (or alternatively 2 in decimal representation) and binary

5
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column index 101 (or alternatively 5 in decimal representation) is the coefficient c11001 of |ψ〉.
Other entries of C{H1,H3} can be determined similarly and finally we can get

C{H1,H3} =

⎛
⎜⎜⎝

c00,000 c00,001 c00,010 c00,011 c00,100 c00,101 c00,110 c00,111

c01,000 c01,001 c01,010 c01,011 c01,100 c01,101 c01,110 c01,111

c10,000 c10,001 c10,010 c10,011 c10,100 c10,101 c10,110 c10,111

c11,000 c11,001 c11,010 c11,011 c11,100 c11,101 c11,110 c11,111

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

c00000 c00001 c00010 c00011 c01000 c01001 c01010 c01011

c00100 c00101 c00110 c00111 c01100 c01101 c01110 c01111

c10000 c10001 c10010 c10011 c11000 c11001 c11010 c11011

c10100 c10101 c10110 c10111 c11100 c11101 c11110 c11111

⎞
⎟⎟⎠ .

In addition, we have two more concrete examples. Suppose {H1,H2,H3} is a three-qubit
system which has six nontrivial partitions: {H1}, {H2}, {H3}, {H1,H2}, {H1,H3} and {H2,H3}.
We use C1, C2, C3, C12, C13 and C23 to denote the corresponding six coefficient matrices of
these partitions, respectively. For the case of the GHZ (Greenberger–Horne–Zeilinger) state
[15] |GHZ〉 = 1√

2
(|000〉 + |111〉), the coefficients c000 = c111 = 1/

√
2 and other coefficients

are all zeros. Thus we can obtain the six coefficient matrices by (2.11) as follows:

C1 = C2 = C3 =
(

1/
√

2 0 0 0
0 0 0 1/

√
2

)
,

C12 = C13 = C23 =

⎛
⎜⎜⎝

1/
√

2 0
0 0
0 0
0 1/

√
2

⎞
⎟⎟⎠ .

(2.13)

Similarly, for the case of the W state [13] |W 〉 = 1√
3
(|001〉 + |010〉 + |100〉), the coefficients

c001 = c010 = c100 = 1/
√

3 and other coefficients are all zeros. Thus the six coefficient
matrices are as follows:

C1 = C2 = C3 =
(

0 1/
√

3 1/
√

3 0
1/

√
3 0 0 0

)
,

C12 = C13 = C23 =

⎛
⎜⎜⎜⎝

0 1/
√

3
1/

√
3 0

1/
√

3 0
0 0

⎞
⎟⎟⎟⎠ .

(2.14)

Formula (2.12) is a practical and convenient way to compute the reduced density matrices
of a multipartite quantum system having a pure state and thus can substitute for tracing out
operations. For example, if we use ρ1, ρ2, ρ3, ρ12, ρ13 and ρ23 to denote the six reduced
density matrices of the six nontrivial partitions of a three-qubit system having the W state,
respectively, by (2.12) and (2.14) we will obtain

ρ1 = ρ2 = ρ3 = C1C
∗
1 = C2C

∗
2 = C3C

∗
3 =

(
0 1/

√
3 1/

√
3 0

1/
√

3 0 0 0

)

×

⎛
⎜⎜⎜⎝

0 1/
√

3
1/

√
3 0

1/
√

3 0
0 0

⎞
⎟⎟⎟⎠ =

(
2/3 0
0 1/3

)
(2.15)

6
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and

ρ12 = ρ13 = ρ23 = C12C
∗
12 = C13C

∗
13 = C23C

∗
23 =

⎛
⎜⎜⎜⎝

0 1/
√

3
1/

√
3 0

1/
√

3 0
0 0

⎞
⎟⎟⎟⎠

×
(

0 1/
√

3 1/
√

3 0
1/

√
3 0 0 0

)
=

⎛
⎜⎜⎝

1/3 0 0 0
0 1/3 1/3 0
0 1/3 1/3 0
0 0 0 0

⎞
⎟⎟⎠ . (2.16)

According to purification [1], which connects mixed states with pure states, any density
matrix can be viewed as a reduced density matrix after tracing out the corresponding reference
system. We can, therefore, get the following more general result by theorem 2.1.

Corollary 2.1. For any density matrix ρ on a Hilbert space V with dimension d, there always
exists a matrix C such that

ρ = CC∗ (2.17)

in which C is a matrix of size d × dr where dr � rank(ρ) is the dimension of the reference
system corresponding to some purification |ψ〉 of ρ, all of whose entries are exactly all the
coefficients of |ψ〉 with respect to some arbitrary orthonormal product basis. The matrix C
can be arranged according to (2.11). We call C the coefficient matrix of the density matrix ρ

or the coefficient matrix of space V.

For convenience and without confusion, when we use the term ‘coefficient matrix’ in the
subsequent discussion, we will not mention which reduced density matrix or partition of some
multipartite qudit system having a pure state this coefficient matrix corresponds to but let it
implicit in contexts. Similarly, all matrices and coefficients of pure states are with respect
to the given orthonormal product bases that will also be implicit in contexts later unless we
emphasize otherwise specifically.

Now we give some basic properties of coefficient matrices.

Property 2.1. For a pure state of an n-partite qudit system,

(1) there are totally 2n − 2 coefficient matrices (of nontrivial partitions);
(2) all coefficient matrices have the same entries at the top-left corners which are c00···0’s (n

zeros in the subscript) as well as the same entries at the bottom-right corners which are
c(d1−1)(d2−1)···(dn−1)’s (the subscript is not a product of (dt − 1)’s, t = 1, 2, . . . , n, but a
permutation of them);

(3) the coefficient matrix of a partition P is the transpose of that of its complement partition
P̄ :

CP = CT
P̄
; (2.18)

(4) there are totally 2n−1 − 1 pairs of coefficient matrices, each of which, i.e. {CP ,CP̄ },
consists of the coefficient matrix of some partition and that of its complement partition
that are one another’s transposes;

(5) coefficient matrices are basis dependent and accurately there exists a right unitary relation
between two corresponding coefficient matrices with respect to two bases, i.e. if we use
CP and C ′

P to denote the coefficient matrix of a partition P with respect to basis B and
basis B ′ respectively (here the basis we refer to is the arbitrary one with respect to which

7
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the pure state of the n-partite qudit system is expressed as shown by (2.1)), then there
exists a dP̄ × dP̄ unitary matrix U such that

C ′
P = CP U ; (2.19)

(6) although coefficient matrices are basis dependent, their ranks are not. More precisely, if
we use CP and C ′

P to denote the coefficient matrix of a partition P with respect to basis
B and basis B ′ respectively, it always holds that

rank(C ′
P ) = rank(CP ) = rank(ρP ) (2.20)

where ρP is the reduced density operator of partition P.

Proof. Properties (1)–(4) are easy to verify by (2.11). Here we will only prove (5)
and (6).
(5) All entries of a coefficient matrix are exactly all the coefficients of a pure state that are
basis dependent. Therefore coefficient matrices are basis dependent. By (2.12), we can get

C ′
P C ′∗

P = CP C∗
P = ρP . (2.21)

Hence C ′
P and CP have the same singular values. If we arrange their singular values in

decreasing order and choose the same left singular vectors (the left singular vectors of a
matrix A are the eigenvectors corresponding to the non-zero eigenvalues of AA∗) for them so
that their right singular vectors (the right singular vectors of a matrix A are the eigenvectors
corresponding to the non-zero eigenvalues of A∗A) may be determined correspondingly, we
can obtain their respective singular value decompositions as follows:

CP =
∑

k

sk|kP 〉〈kP̄ | (2.22)

C ′
P =

∑
k

sk|kP 〉〈k ′̄
P
| (2.23)

where nonnegative sk’s are singular values, the orthonormal |kP 〉’s are left singular vectors
and the orthonormal |kP̄ 〉’s and the orthonormal |k ′̄

P
〉’s are the right singular vectors of CP

and C ′
P , respectively. By extending |kP̄ 〉’s and |k ′̄

P
〉’s to orthonormal bases |KP̄ 〉’s and |K ′̄

P
〉’s,

respectively, we can construct a dP̄ × dP̄ unitary matrix U = ∑
K |KP̄ 〉〈K ′̄

P
| such that

C ′
P = CP U .

(6) According to (2.21) and the result rank(M) = rank(MM∗), where M is any matrix, in
matrix theory [16], it follows that rank(C ′

P ) = rank(CP ) = rank(ρP ). �

We can see that (2.13) (for the GHZ state) and (2.14) (for the W state) are two concrete
examples for properties (1)–(4). Equation (2.19) in property (5) shows explicitly the relation
between two corresponding coefficient matrices with respect to two bases. Property (6) tells
us that the rank of a coefficient matrix is basis independent. Thus it seems reasonable to
assume that the ranks of coefficient matrices reflect some essential qualities of a multipartite
pure state. Hence we can use the ranks of coefficient matrices to characterize these qualities.
We will illustrate this in section 3 shortly. Therefore, in general case, we do not care about
the choice of basis.

8
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3. Practical necessary and sufficient full and partial separability criteria for

multipartite pure states based on the coefficient matrix method

Definition 3.1. A pure state |ψ〉 of an n-partite qudit system H = H1 ⊗ H2 ⊗ · · · ⊗ Hn is
(fully) separable if

|ψ〉 = |ψ1〉|ψ2〉 · · · |ψn〉 (3.1)

where |ψt 〉 ∈ Ht , t = 1, 2, . . . , n. An n-partite qudit pure state |ψ〉 is entangled if it is not
separable.

Theorem 3.1. Suppose an n-partite qudit pure state |ψ〉 has expression (2.1). Then the
following statements are mutually equivalent:

(A) |ψ〉 is (fully) separable;
(B) all 2n − 2 coefficient matrices are of rank 1;
(C) all n one-party subsystem coefficient matrices are of rank 1;
(D) all 2 × 2 minors of all 2n − 2 coefficient matrices are zeros;
(E) all 2 × 2 minors of all n one-party subsystem coefficient matrices are zeros;
(F)

ci1i2···incj1j2···jn
= ck1k2···kn

cl1l2···ln (3.2)

where i1i2 · · · in, j1j2 · · · jn, k1k2 · · · kn and l1l2 · · · ln are mutually different coefficient indices
and {it , jt } = {kt , lt }, t = 1, 2, . . . , n.

In (F), the sets {it , jt } and {kt , lt } permit the appearance of two identical elements like
{0, 0}, {1, 1}. At the same time, they do not care about the order of elements. For example,
{0, 1} and {1, 0} are viewed as the same set.

Proof.

(a) (A) iff (B)
Suppose CP is the coefficient matrix of any partition P . By definition 3.1 and (2.20), we
have

|ψ〉is separable ⇔ the reduced state ρP of any partition P is a pure state

⇔ rank(ρP ) = 1 for any partition P ⇔ rank(CP ) = 1 for any partition P .
(b) (A) iff (C)

The proof is similar to (a).
(c) (B) iff (D)

Since rank(CP ) � 1, by linear algebra (a matrix is of rank r if and only if there is
one non-zero r × r minor in it and all (r + 1) × (r + 1) minors in it are zeros), we obtain
(B) iff (D).

(d) (C) iff (E)
The proof is similar to (c).

(e) (D) iff (F)

First, we prove that four coefficients ci1i2···in , cj1j2···jn
, ck1k2···kn

and cl1l2···ln whose different
indices satisfy {it , jt } = {kt , lt } for t = 1, 2, . . . , n must form a 2 × 2 submatrix of some
coefficient matrix. For any t, the equation {it , jt } = {kt , lt } is equivalent to{

it = kt

jt = lt
or

{
it = lt

jt = kt

.

9
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According to these two cases, we can classify all t’s or partition the set I = {1, 2, . . . , n} into
two disjoint sets IP and IP̄ as follows:

IP =
{
t :

{
it = kt

jt = lt
, t ∈ I

}
and IP̄ =

{
t :

{
it = lt

jt = kt

, t ∈ I

}
.

Although the t’s in the particular situation it = jt = kt = lt may be included in both of the
above two sets, for convenience we only classify them into IP . Suppose that the partition
corresponding to IP is P with its coefficient matrix CP . By theorem 2.1, we know that ci1i2···in
and ck1k2···kn

are in the same row of CP , cj1j2···jn
and cl1l2···ln are in the same row of CP , ci1i2···in

and cl1l2···ln are in the same column of CP and cj1j2···jn
and ck1k2···kn

are in the same column
of CP . Since i1i2 · · · in, j1j2 · · · jn, k1k2 · · · kn and l1l2 · · · ln are mutually different, the four
coefficients ci1i2···in , cj1j2···jn

, ck1k2···kn
and cl1l2···ln must form a 2 × 2 submatrix of CP .

If all 2 × 2 minors of all 2n − 2 coefficient matrices are zeros, by the above result,
the determinant of the 2 × 2 submatrix of CP formed by any four coefficients ci1i2···in ,
cj1j2···jn

, ck1k2···kn
and cl1l2···ln satisfying {it , jt } = {kt , lt } for t = 1, 2, . . . , n is zero, i.e.

ci1i2···incj1j2···jn
= ck1k2···kn

cl1l2···ln .
Conversely, we can prove the four entries of any 2 × 2 minor of any coefficient matrix CP

must be four coefficients ci1i2···in , cj1j2···jn
, ck1k2···kn

and cl1l2···ln satisfying {it , jt } = {kt , lt } for
t = 1, 2, . . . , n. By (2.11), any 2 × 2 minor D of any coefficient matrix CP has the form

D =
∣∣∣∣ciP ,iP̄ ciP ,i ′̄

P

ci ′P ,iP̄ ci ′P ,i ′̄
P

∣∣∣∣ .
If we set ciP ,iP̄ = ci1i2···in , ci ′P ,i ′̄

P
= cj1j2···jn

, ciP ,i ′̄
P

= ck1k2···kn
and ci ′P ,iP̄ = cl1l2···ln respectively,

by theorem 2.1, we get{
it = kt

jt = lt
for t ∈ IP = {t : Ht ∈ P } and

{
it = lt

jt = kt

for t ∈ IP̄ = {t : Ht ∈ P̄ }.

Therefore {it , jt } = {kt , lt } for any t ∈ {1, 2, . . . , n}.
If (3.2) holds, by the above result, we can obtain ci1i2···incj1j2···jn

= ck1k2···kn
cl1l2···ln , i.e.

ciP ,iP̄ ci ′P ,i ′̄
P

= ciP ,i ′̄
P
ci ′P ,iP̄ . Thus D = 0 or equivalently all 2 × 2 minors of all 2n − 2 coefficient

matrices are zeros. �

As criteria for separability of multipartite pure states, theorem 3.1 is very operational
and convenient. For example, because all coefficient matrices in (2.13) and (2.14) are of
rank 2, by criterion (B), we can ascertain that both the GHZ state and the W state are entangled
pure states. Compared with criteria (B) and (C), criteria (D), (E) and (F) avoid computation
of ranks of coefficient matrices and investigate the coefficients directly. For example, for the
Higuchi–Sudbery state |M4〉 (see (1.1)) of a four-qubit system {A,B,C,D}, the 2 × 2 minor∣∣∣∣∣

0 1√
6

1√
6

0

∣∣∣∣∣
of the coefficient matrix

CAB = 1√
6

⎛
⎜⎜⎝

0 0 0 1
0 ω ω2 0
0 ω2 ω 0
1 0 0 0

⎞
⎟⎟⎠
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is non-zero. Thus by criterion (D), the Higuchi–Sudbery state is an entangled pure state.
Criterion (F) is a generalization of a corresponding result in [7]. Unlike criteria (D) and
(E), it does not restrict the examined four coefficients in a 2 × 2 submatrix of a coefficient
matrix, but rather with the condition {it , jt } = {kt , lt } for t = 1, 2, . . . , n. For instance,
the inseparability of the Higuchi–Sudbery state can also be determined if we investigate the
four coefficients c0001 = 0, c0101 = 1√

6
ω, c1001 = 1√

6
ω2 and c1101 = 0 which lie in the

second column of CAB (by the result in the proof ‘(D) ⇒ (F)’ of ‘(D) iff (F)’, we can see that
these four coefficients must form a 2 × 2 submatrix of the coefficient matrix CACD) and get
c0001c1101 = 0 	= c0101c1001 = ω3/6 = 1/6.

Theorem 3.1 gives us practical full separability criteria for multipartite pure states, but it
is also important to discuss their partial separability with respect to given partitions. In this
case, the coefficient matrix method still allows for practical criteria.

Definition 3.2. A pure state |ψ〉 of n elementary qudit subsystems H1,H2, . . . , Hn is
separable with respect to a given partition {I1, . . . , Im}, where It ’s (1 � t � m, 2 � m � n)
are disjoint nonempty subsets of the index set I = {1, . . . , n} and

⋃m
t=1 It = I , if

|ψ〉 = |ψI1〉|ψI2〉 · · · |ψIm
〉 (3.3)

where |ψIt
〉 ∈ HIt

, which denotes the tensor product of all elementary Hilbert spaces
corresponding to the indices in It , t = 1, 2, . . . , m. An n-partite qudit pure state |ψ〉 is
entangled with respect to a given partition {I1, . . . , Im} if it is not separable with respect to
this partition.

According to this definition, we can see that a multipartite pure state is called separable
with respect to a given partition {I1, . . . , Im} if it is fully separable in the sense that it is
regarded as a pure state of m parties HI1 ,HI2 , . . . , HIm

. Thus we can use full separability
criteria theorem 3.1 based on the coefficient matrix method to investigate the partial separability
of a multipartite pure state. However, we should note that the coefficient matrices that we use
are based on the orthonormal product basis of n elementary quantum subsystems rather than
that of the m composite parties. Therefore we should adjust theorem 3.1 appropriately.

Theorem 3.2. Suppose an n-partite qudit pure state |ψ〉 has expression (2.1). Then the
following statements are mutually equivalent:

(I) |ψ〉 is separable with respect to a given partition {I1, . . . , Im};
(II) all 2m − 2 coefficient matrices corresponding to all 2m − 2 nontrivial unions of It’s,

t = 1, 2, . . . , m (i.e. I1, . . . , I1 ∪ I2, . . . , I2 ∪ I3 ∪ · · · ∪ In) are of rank 1;
(III) all m coefficient matrices corresponding to all It’s, t = 1, 2, . . . , m, are of rank 1;
(IV) all 2 × 2 minors of all 2m − 2 coefficient matrices corresponding to all 2m − 2 nontrivial

unions of It’s, t = 1, 2, . . . , m, are zeros;
(V) all 2 × 2 minors of all m coefficient matrices corresponding to all It’s, t = 1, 2, . . . , m,

are zeros;
(VI)

ci1i2···incj1j2···jn
= ck1k2···kn

cl1l2···ln (3.4)

where i1i2 · · · in, j1j2 · · · jn, k1k2 · · · kn and l1l2 · · · ln are mutually different coefficient
indices and

{
iIt

, jIt

} = {
kIt

, lIt

}
, t = 1, 2, . . . , m, where iIt

= is1 is2 · · · isq
if It =

{s1, s2, . . . , sq}, s1 < s2 < · · · < sq and jIt
, kIt

and lIt
have the same meanings.

In (VI), the sets
{
iIt

, jIt

}
and

{
kIt

, lIt

}
permit the appearance of two identical elements

like {01, 01}, {101, 101}. At the same time, they do not care about the order of elements. For
example, {011, 111} and {111, 011} are viewed as the same set.
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Proof.

(i) (I) iff (II)
Suppose CP is the coefficient matrix corresponding to any nontrivial union IP of It’s
and P is the tensor product of all elementary Hilbert spaces corresponding to IP . By
definition 3.2 and (2.20), we have
|ψ〉 is separable with respect to a given partition {I1, · · · , Im} ⇔ the reduced state ρP

corresponding to any nontrivial union IP of It’s is a pure state ⇔ rank(ρP ) = 1 for any
nontrivial union IP ⇔ rank(CP ) = 1 for any nontrivial union IP .

(ii) (I) iff (III)
The proof is similar to (i).

(iii) (II) iff (IV)
The proof is similar to (c) in the proof of theorem 3.1.

(iv) (III) iff (V)
The proof is similar to (c) in the proof of theorem 3.1.

(v) (IV) iff (VI)

First, along the similar line to (c) in the proof of theorem 3.1, we prove that four coefficients
ci1i2···in , cj1j2···jn

, ck1k2···kn
and cl1l2···ln whose different indices satisfy

{
iIt

, jIt

} = {
kIt

, lIt

}
for

t = 1, 2, . . . , m must form a 2 × 2 submatrix of the coefficient matrix CP corresponding to
some nontrivial union IP of It’s. For any t, the equation

{
iIt

, jIt

} = {
kIt

, lIt

}
is equivalent to{

iIt
= kIt

jIt
= lIt

or

{
iIt

= lIt

jIt
= kIt

.

According to these two cases, we can partition the index set I = {1, 2, . . . , n} into two disjoint
sets IP and IP̄ as follows:

IP =
⋃

t :
{

iIt =kIt

jIt =lIt

It and IP̄ =
⋃

t :
{

iIt =lIt
jIt =kIt

It .

Here we classify only the t’s in the particular situation iIt
= jIt

= kIt
= lIt

, which may be

included in both the above two cases, into the case
{

iIt =kIt

jIt =lIt
. Suppose that the tensor product

of all elementary Hilbert spaces corresponding to IP is P with its coefficient matrix CP . By
theorem 2.1, we know that ci1i2···in and ck1k2···kn

are in the same row of CP , cj1j2···jn
and cl1l2···ln

are in the same row of CP , ci1i2···in and cl1l2···ln are in the same column of CP and cj1j2···jn
and

ck1k2···kn
are in the same column of CP . Since i1i2 · · · in, j1j2 · · · jn, k1k2 · · · kn and l1l2 · · · ln

are mutually different, the four coefficients ci1i2···in , cj1j2···jn
, ck1k2···kn

and cl1l2···ln must form a
2 × 2 submatrix of CP .

It immediately follows from the above result that (IV) ⇒ (VI).
Conversely, we can prove that the four entries of any 2 × 2 minor of the coefficient matrix

CP corresponding to any nontrivial union IP of It’s must be the four coefficients ci1i2···in ,
cj1j2···jn

, ck1k2···kn
and cl1l2···ln satisfying

{
iIt

, jIt

} = {
kIt

, lIt

}
for t = 1, 2, . . . , m. By (2.11),

any 2 × 2 minor D of the coefficient matrix CP corresponding to any nontrivial union IP of
It’s has the form

D =
∣∣∣∣ciP ,iP̄ ciP ,i ′̄

P

ci ′P ,iP̄ ci ′P ,i ′̄
P

∣∣∣∣ .
If we set ciP ,iP̄ = ci1i2···in , ci ′P ,i ′̄

P
= cj1j2···jn

, ciP ,i ′̄
P

= ck1k2···kn
and ci ′P ,iP̄ = cl1l2···ln respectively,

by theorem 2.1, we get{
iIt

= kIt

jIt
= lIt

for It ⊆ IP and

{
iIt

= lIt

jIt
= kIt

for It ⊆ IP̄

12
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where IP̄ is the complement of IP . Therefore
{
iIt

, jIt

} = {
kIt

, lIt

}
for any t ∈ {1, 2, . . . , m}.

It immediately follows from the above result that (VI) ⇒ (IV). �

We can see that theorem 3.2 corresponds to theorem 3.1 very well and it also gives us
practical criteria for partial separability of multipartite pure states. For example, because
all coefficient matrices in (2.13) and (2.14) are of rank 2, we can ascertain that both the
GHZ state and the W state are not separable with respect to any partition. The state
|ψ〉 = 1√

2
|000〉 + 1√

2
|011〉 of a three-qubit system {A,B,C} has coefficient matrices

CA =
(

1√
2

0 0 1√
2

0 0 0 0

)

and

CAB =

⎛
⎜⎜⎜⎝

1√
2

0

0 1√
2

0 0
0 0

⎞
⎟⎟⎟⎠ .

Since rank(CA) = 1 and rank(CAB) = 2, we can conclude that |ψ〉 is separable with
respect to the bipartition A(BC) but not separable with respect to the bipartition (AB)C.
To show the use of criterion (VI), we again investigate the four coefficients c0001 = 0,
c0101 = 1√

6
ω, c1001 = 1√

6
ω2 and c1101 = 0 of the Higuchi–Sudbery state. Bipartition the

four indices 0001, 1101, 0101 and 1001 into two partsAC and BD, respectively, and then
we find that it holds that {00, 10} = {00, 10} (corresponding to their respective AC parts)
and {01, 11} = {11, 01} (corresponding to their respective BD parts). On the other hand,
c0001c1101 = 0 	= c0101c1001 = ω3/6 = 1/6. Therefore, by criterion (VI), the Higuchi–
Sudbery state is not separable with respect to the bipartition (AC)(BD).

As we have mentioned at the end of section 2, the ranks of coefficient matrices appear
to reflect some essential qualities of a multipartite pure state so that we can use them to
characterize these qualities. Retrospectively, we can realize that in this section we have used
the ranks of coefficient matrices to investigate the full and partial separability of a multipartite
pure state.

4. Conclusions, discussions and open problems

In the former parts of this paper, we have introduced the concept, construction and some basic
properties of coefficient matrices, and then given practical full and partial separability criteria
for multipartite pure states based on coefficient matrices. In section 2, given a pure state
of an n-partite quantum system, we have proposed step-by-step derivation for the equation
ρ = CC∗, based on which coefficient matrices have been constructed. At first, by tracing out
one subsystem, we have constructed the coefficient matrices of n−1 subsystems. Subsequently,
by tracing out two subsystems, we have constructed coefficient matrices of n − 2 subsystems.
Along the same line, we have constructed the coefficient matrix of any partition. Finally,
by the notion of purification, we have generalized the concept of coefficient matrices to any
density matrix or any quantum system. Corollary 2.1 tells us that coefficient matrices are
closely related to density matrices and their purifications. After the construction of coefficient
matrices, we have given some of their basic properties. After the necessary groundwork is laid
in section 2, we have obtained practical necessary and sufficient full and partial separability
criteria for multipartite pure states in section 3 and we can see that coefficient matrices are
very operational and convenient.
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One simple but important thought throughout this paper is the idea of bipartition for a
multipartite quantum system. For example, we note equation (2.20), which is the basis of
theorems 3.1 and 3.2. Indeed, rank(ρP ) is nothing but the Schmidt number of the Schmidt
decomposition of a multipartite pure state |ψ〉 in any bipartition {P, P̄ }. Therefore, when
we use the ranks of coefficient matrices to investigate the full and partial separability of a
multipartite pure state, we actually use the Schmidt numbers in bipartitions for the entire
multipartite quantum system to do so.

Some questions about the coefficient matrix method arise naturally. For example, are
there more properties of coefficient matrices that will be helpful for investigating multipartite
quantum systems? Can this method be extended to the case of mixed states? How can it be
used to explore some quantitative entanglement problems like entanglement measure [17] and
generalized concurrence [18]? Discussions about these questions are definitely beneficial and
important.
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